Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Graduate students across disciplines are eager for experiential training that enables them to address real-world environmental challenges. Simultaneously, communities across the world face numerous environmental challenges, including increased frequency of extreme heat in summer and poor air quality, and could benefit from the expertise and engagement of graduate students with the requisite skills and interests to address these challenges. In this paper we bring together lessons learned from three interdisciplinary graduate training programs focused on preparing graduate students to contribute to urban environmental solutions by working in partnerships with non-academic organizations. We discuss the multiple elements required for partnerships to be mutually beneficial, including using a T-shaped approach to training that incorporates bothdepthandbreadthwhile making strong efforts to broaden participation. We share lessons with the goal of enhancing graduate programs to improve training of students to address urban environmental challenges globally. This training aligns with the United Nations Sustainable Development Goal 17, “Partnership for the Goals,” which aims to achieve sustainable development goals through partnerships among entities.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Temperate forests are threatened by urbanization and fragmentation, with over 20% (118,300 km2) of U.S. forest land projected to be subsumed by urban land development. We leveraged a unique, well-characterized urban-to-rural and forest edge-to-interior gradient to identify the combined impact of these two land use changes—urbanization and forest edge creation—on the soil microbial community in native remnant forests. We found evidence of mutualism breakdown between trees and their fungal root mutualists [ectomycorrhizal (ECM) fungi] with urbanization, where ECM fungi colonized fewer tree roots and had less connectivity in soil microbiome networks in urban forests compared to rural forests. However, urbanization did not reduce the relative abundance of ECM fungi in forest soils; instead, forest edges alone led to strong reductions in ECM fungal abundance. At forest edges, ECM fungi were replaced by plant and animal pathogens, as well as copiotrophic, xenobiotic-degrading, and nitrogen-cycling bacteria, including nitrifiers and denitrifiers. Urbanization and forest edges interacted to generate new “suites” of microbes, with urban interior forests harboring highly homogenized microbiomes, while edge forest microbiomes were more heterogeneous and less stable, showing increased vulnerability to low soil moisture. When scaled to the regional level, we found that forest soils are projected to harbor high abundances of fungal pathogens and denitrifying bacteria, even in rural areas, due to the widespread existence of forest edges. Our results highlight the potential for soil microbiome dysfunction—including increased greenhouse gas production—in temperate forest regions that are subsumed by urban expansion, both now and in the future.more » « less
- 
            Abstract Fragmentation transforms the environment along forest edges. The prevailing narrative, driven by research in tropical systems, suggests that edge environments increase tree mortality and structural degradation resulting in net decreases in ecosystem productivity. We show that, in contrast to tropical systems, temperate forest edges exhibit increased forest growth and biomass with no change in total mortality relative to the forest interior. We analyze >48,000 forest inventory plots across the north-eastern US using a quasi-experimental matching design. At forest edges adjacent to anthropogenic land covers, we report increases of 36.3% and 24.1% in forest growth and biomass, respectively. Inclusion of edge impacts increases estimates of forest productivity by up to 23% in agriculture-dominated areas, 15% in the metropolitan coast, and +2% in the least-fragmented regions. We also quantify forest fragmentation globally, at 30-m resolution, showing that temperate forests contain 52% more edge forest area than tropical forests. Our analyses upend the conventional wisdom of forest edges as less productive than intact forest and call for a reassessment of the conservation value of forest fragments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
